Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 67(1): 19-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032368

RESUMO

In the last few decades, atherosclerotic cardiovascular disease (ASCVD) risk has decreased dramatically among individuals affected by familial hypercholesterolaemia (FH) as a result of the early initiation of statin treatment in childhood. Contemporaneously important improvements in care for people with diabetes have also been made, such as the prevention of mortality from acute diabetic complications. However, individuals with type 1 diabetes still have a two to eight times higher risk of death than the general population. In the last 20 years, a few landmark studies on excess mortality in people with type 1 diabetes, in particular young adults, have been published. Although these studies were carried out in different populations, all reached the same conclusion: individuals with type 1 diabetes have a pronounced increased risk of ASCVD. In this review, we address the role of lipid abnormalities in the development of ASCVD in type 1 diabetes and FH. Although type 1 diabetes and FH are different diseases, lessons could be learned from the early initiation of statins in children with FH, which may provide a rationale for more stringent control of dyslipidaemia in children with type 1 diabetes.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipoproteinemia Tipo II , Criança , Adulto Jovem , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Doenças Cardiovasculares/epidemiologia , Hiperlipoproteinemia Tipo II/complicações , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/epidemiologia , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico
2.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976644

RESUMO

Invariant natural killer T (iNKT) cells act at the interface between lipid metabolism and immunity because of their restriction to lipid antigens presented on CD1d by antigen-presenting cells (APCs). How foreign lipid antigens are delivered to APCs remains elusive. Since lipoproteins routinely bind glycosylceramides structurally similar to lipid antigens, we hypothesized that circulating lipoproteins form complexes with foreign lipid antigens. In this study, we used 2-color fluorescence correlation spectroscopy to show, for the first time to our knowledge, stable complex formation of lipid antigens α-galactosylceramide (αGalCer), isoglobotrihexosylceramide, and OCH, a sphingosine-truncated analog of αGalCer, with VLDL and/or LDL in vitro and in vivo. We demonstrate LDL receptor-mediated (LDLR-mediated) uptake of lipoprotein-αGalCer complexes by APCs, leading to potent complex-mediated activation of iNKT cells in vitro and in vivo. Finally, LDLR-mutant PBMCs of patients with familial hypercholesterolemia showed impaired activation and proliferation of iNKT cells upon stimulation, underscoring the relevance of lipoproteins as a lipid antigen delivery system in humans. Taken together, circulating lipoproteins form complexes with lipid antigens to facilitate their transport and uptake by APCs, leading to enhanced iNKT cell activation. This study thereby reveals a potentially novel mechanism of lipid antigen delivery to APCs and provides further insight into the immunological capacities of circulating lipoproteins.


Assuntos
Células T Matadoras Naturais , Humanos , Células Apresentadoras de Antígenos , Lipoproteínas/metabolismo
3.
Pediatrics ; 150(6)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321395

RESUMO

Childhood and adolescence provide a unique window of opportunity to prevent atherosclerotic cardiovascular disease later in life, especially for pediatric groups at risk. The growing list of pediatric groups at risk includes individuals with chronic inflammatory disorders, organ transplants, familial hypercholesterolemia, endocrine disorders, childhood cancer, chronic kidney diseases, congenital heart diseases, and premature birth, as well as increasing numbers of children and adolescents with traditional risk factors such as obesity, hypertension, hyperlipidemia, and hyperglycemia. Here, we focus on recent advances in cardiovascular risk assessment and management and their implications for pediatric practice. First, hyperlipidemia and hyperglycemia are highly prevalent in the young, with hyperlipidemia occurring in 14.6% and hyperglycemia in 16.4% of children and adolescents with a normal weight. Implementation of nonfasting lipid and glycated hemoglobin screening in youth at risk is emerging as a promising avenue to improve testing compliance and lipid and glucose management. Second, blood pressure, lipid, and glucose management in youth at risk are reviewed in depth. Third, multisite and multimodal assessment of early atherosclerosis is discussed as a way to capture the complexity of atherosclerosis as a systemic disease. In addition to conventional carotid intima-media thickness measurements, the measurement of aortic pulse wave velocity and peripheral arterial tonometry can advance the assessment of early atherosclerosis in pediatrics. Finally, we make a plea for lifetime atherosclerotic cardiovascular disease risk stratification that integrates disease-associated risk factors and traditional risk factors and could facilitate tailored cardiovascular risk management in growing numbers of children and adolescents at risk.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hiperglicemia , Adolescente , Criança , Humanos , Espessura Intima-Media Carotídea , Análise de Onda de Pulso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco , Medição de Risco , Fatores de Risco de Doenças Cardíacas , Lipídeos , Pediatras , Glucose
4.
Pediatrics ; 150(5)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36217888

RESUMO

Over the last decades, childhood and adolescence have emerged as an important window of opportunity to prevent atherosclerotic cardiovascular disease (ASCVD) later in life. Here, we discuss the underlying advances in the field. First, atherosclerosis development starts as early as childhood. Atherogenesis initiates in the iliac arteries and abdominal aorta and subsequently develops in higher regions of the arterial tree, as has been demonstrated in nonhuman primate studies and human autopsy studies. Obesity, hypertension, hyperlipidemia, and hyperglycemia at a young age can accelerate atherogenesis. Children and adolescents with obesity have a relative risk of ∼ 2.5 for ASCVD mortality later in life, compared to peers with a normal weight. Conversely, early prevention improves long-term cardiovascular outcomes. Second, we review disease-associated factors that add to the traditional risk factors. Various pediatric disorders carry similar or even higher risks of ASCVD than obesity, including chronic inflammatory disorders, organ transplant recipients, familial hypercholesterolemia, endocrine disorders, childhood cancer survivors, chronic kidney diseases, congenital heart diseases, and premature birth, especially after fetal growth restriction. The involved disease-associated factors that fuel atherogenesis are diverse and include inflammation, vascular, and endothelial factors. The diverse and growing list of pediatric groups at risk underscores that cardiovascular risk management has solidly entered the realm of general pediatrics. In a second review in this series, we will, therefore, focus on recent advances in cardiovascular risk assessment and management and their implications for pediatric practice.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Pediatria , Gravidez , Adolescente , Feminino , Animais , Humanos , Criança , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Fatores de Risco , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Medição de Risco , Fatores de Risco de Doenças Cardíacas , Obesidade
5.
J Am Heart Assoc ; 11(14): e024675, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35861840

RESUMO

Background Adolescents with chronic disease are often exposed to inflammatory, metabolic, and hemodynamic risk factors for early atherosclerosis. Since postmortem studies have shown that atherogenesis starts in the aorta, the CDACD (Cardiovascular Disease in Adolescents with Chronic Disease) study investigated preclinical aortic atherosclerosis in these adolescents. Methods and Results The cross-sectional CDACD study enrolled 114 adolescents 12 to 18 years old with chronic disorders including juvenile idiopathic arthritis, cystic fibrosis, obesity, corrected coarctation of the aorta, and healthy controls with a corrected atrial septal defect. Cardiovascular magnetic resonance was used to assess aortic pulse wave velocity and aortic wall thickness, as established aortic measures of preclinical atherosclerosis. Cardiovascular magnetic resonance showed a higher aortic pulse wave velocity, which reflects aortic stiffness, and higher aortic wall thickness in all adolescent chronic disease groups, compared with controls (P<0.05). Age (ß=0.253), heart rate (ß=0.236), systolic blood pressure (ß=-0.264), and diastolic blood pressure (ß=0.365) were identified as significant predictors for aortic pulse wave velocity, using multivariable linear regression analysis. Aortic wall thickness was predicted by body mass index (ß=0.248) and fasting glucose (ß=0.242), next to aortic lumen area (ß=0.340). Carotid intima-media thickness was assessed using ultrasonography, and was only higher in adolescents with coarctation of the aorta, compared with controls (P<0.001). Conclusions Adolescents with chronic disease showed enhanced aortic stiffness and wall thickness compared with controls. The enhanced aortic pulse wave velocity and aortic wall thickness in adolescents with chronic disease could indicate accelerated atherogenesis. Our findings underscore the importance of the aorta for assessment of early atherosclerosis, and the need for tailored cardiovascular follow-up of children with chronic disease.


Assuntos
Coartação Aórtica , Doenças da Aorta , Aterosclerose , Rigidez Vascular , Adolescente , Coartação Aórtica/complicações , Doenças da Aorta/complicações , Doenças da Aorta/etiologia , Aterosclerose/etiologia , Espessura Intima-Media Carotídea , Criança , Doença Crônica , Estudos Transversais , Humanos , Análise de Onda de Pulso , Rigidez Vascular/fisiologia
6.
Sci Rep ; 11(1): 20082, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635725

RESUMO

Invariant Natural Killer T (iNKT) cells respond to the ligation of lipid antigen-CD1d complexes via their T-cell receptor and are implicated in various immunometabolic diseases. We considered that immunometabolic factors might affect iNKT cell function. To this end, we investigated iNKT cell phenotype and function in a cohort of adolescents with chronic disease and immunometabolic abnormalities. We analyzed peripheral blood iNKT cells of adolescents with cystic fibrosis (CF, n = 24), corrected coarctation of the aorta (CoA, n = 25), juvenile idiopathic arthritis (JIA, n = 20), obesity (OB, n = 20), and corrected atrial septal defect (ASD, n = 25) as controls. To study transcriptional differences, we performed RNA sequencing on a subset of obese patients and controls. Finally, we performed standardized co-culture experiments using patient plasma, to investigate the effect of plasma factors on iNKT cell function. We found comparable iNKT cell numbers across patient groups, except for reduced iNKT cell numbers in JIA patients. Upon ex-vivo activation, we observed enhanced IFN-γ/IL-4 cytokine ratios in iNKT cells of obese adolescents versus controls. The Th1-skewed iNKT cell cytokine profile of obese adolescents was not explained by a distinct transcriptional profile of the iNKT cells. Co-culture experiments with patient plasma revealed that across all patient groups, obesity-associated plasma factors including LDL-cholesterol, leptin, and fatty-acid binding protein 4 (FABP4) coincided with higher IFN-γ production, whereas high HDL-cholesterol and insulin sensitivity (QUICKI) coincided with higher IL-4 production. LDL and HDL supplementation in co-culture studies confirmed the effects of lipoproteins on iNKT cell cytokine production. These results suggest that circulating immunometabolic factors such as lipoproteins may be involved in Th1 skewing of the iNKT cell cytokine response in immunometabolic disease.


Assuntos
Artrite Juvenil/imunologia , Fibrose Cística/imunologia , Comunicação Interatrial/imunologia , Células T Matadoras Naturais/imunologia , Obesidade/fisiopatologia , Células Th1/imunologia , Adolescente , Artrite Juvenil/metabolismo , Artrite Juvenil/patologia , Estudos de Casos e Controles , Doença Crônica , Estudos Transversais , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Citocinas/metabolismo , Feminino , Comunicação Interatrial/metabolismo , Comunicação Interatrial/patologia , Humanos , Interferon gama/metabolismo , Masculino
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1157-1167, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31051284

RESUMO

BACKGROUND: Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. RESULTS: Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. CONCLUSION: Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes. SIGNIFICANCE: Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction. Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes. UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. ß-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFNγ and IL4 secretion). Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue. Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes.


Assuntos
Adipócitos/metabolismo , Glucosilceramidas/biossíntese , Células T Matadoras Naturais/metabolismo , Adipócitos/citologia , Apresentação de Antígeno , Comunicação Celular , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Glucosilceramidas/metabolismo , Humanos , Resistência à Insulina , Lipídeos/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/citologia
9.
Front Immunol ; 9: 1192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892305

RESUMO

Invariant natural killer T (iNKT) cells are lipid-reactive T cells with profound immunomodulatory potential. They are unique in their restriction to lipid antigens presented in CD1d molecules, which underlies their role in lipid-driven disorders such as obesity and atherosclerosis. In this review, we discuss the contribution of iNKT cell activation to immunometabolic disease, metabolic programming of lipid antigen presentation, and immunometabolic activation of iNKT cells. First, we outline the role of iNKT cells in immunometabolic disease. Second, we discuss the effects of cellular metabolism on lipid antigen processing and presentation to iNKT cells. The synthesis and processing of glycolipids and other potential endogenous lipid antigens depends on metabolic demand and may steer iNKT cells toward adopting a Th1 or Th2 signature. Third, external signals such as toll-like receptor ligands, adipokines, and cytokines modulate antigen presentation and subsequent iNKT cell responses. Finally, we will discuss the relevance of metabolic programming of iNKT cells in human disease, focusing on their role in disorders such as obesity and atherosclerosis. The critical response to metabolic changes places iNKT cells at the helm of immunometabolic disease.


Assuntos
Apresentação de Antígeno , Antígenos CD1d/imunologia , Citocinas/imunologia , Glicolipídeos/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/imunologia , Animais , Humanos
10.
Immunology ; 153(2): 179-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28898395

RESUMO

The global obesity epidemic and its associated co-morbidities, including type 2 diabetes, cardiovascular disease and certain types of cancers, have drawn attention to the pivotal role of adipocytes in health and disease. Besides their 'classical' function in energy storage and release, adipocytes interact with adipose-tissue-resident immune cells, among which are lipid-responsive invariant natural killer T (iNKT) cells. The iNKT cells are activated by lipid antigens presented by antigen-presenting cells as CD1d/lipid complexes. Upon activation, iNKT cells can rapidly secrete soluble mediators that either promote or oppose inflammation. In lean adipose tissue, iNKT cells elicit a predominantly anti-inflammatory immune response, whereas obesity is associated with declining iNKT cell numbers. Recent work showed that adipocytes act as non-professional antigen-presenting cells for lipid antigens. Here, we discuss endogenous lipid antigen processing and presentation by adipocytes, and speculate on how these lipid antigens, together with 'environmental factors' such as tissue/organ environment and co-stimulatory signals, are able to influence the fate of adipose-tissue-resident iNKT cells, and thereby the role of these cells in obesity and its associated pathologies.


Assuntos
Tecido Adiposo/imunologia , Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Lipídeos/imunologia , Células T Matadoras Naturais/imunologia , Obesidade/imunologia , Adipócitos/imunologia , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Células Apresentadoras de Antígenos/patologia , Antígenos CD1d/imunologia , Humanos , Células T Matadoras Naturais/patologia , Obesidade/patologia
11.
PLoS One ; 12(10): e0187068, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073286

RESUMO

BACKGROUND: Childhood obesity prevalence has increased worldwide and is an important risk factor for type 2 diabetes (T2D) and cardiovascular disease (CVD). The production of inflammatory adipokines by obese adipose tissue contributes to the development of T2D and CVD. While levels of circulating adipokines such as adiponectin and leptin have been established in obese children and adults, the expression of adiponectin and leptin receptors on circulating immune cells can modulate adipokine signalling, but has not been studied so far. Here, we aim to establish the expression of adiponectin and leptin receptors on circulating immune cells in obese children pre and post-lifestyle intervention compared to normal weight control children. METHODS: 13 obese children before and after a 1-year lifestyle intervention were compared with an age and sex-matched normal weight control group of 15 children. Next to routine clinical and biochemical parameters, circulating adipokines were measured, and flow cytometric analysis of adiponectin receptor 1 and 2 (AdipoR1, AdipoR2) and leptin receptor expression on peripheral blood mononuclear cell subsets was performed. RESULTS: Obese children exhibited typical clinical and biochemical characteristics compared to controls, including a higher BMI-SD, blood pressure and circulating leptin levels, combined with a lower insulin sensitivity index (QUICKI). The 1-year lifestyle intervention resulted in stabilization of their BMI-SD. Overall, circulating leukocyte subsets showed distinct adipokine receptor expression profiles. While monocytes expressed high levels of all adipokine receptors, NK and iNKT cells predominantly expressed AdipoR2, and B-lymphocytes and CD4+ and CD8+ T-lymphocyte subsets expressed AdipoR2 as well as leptin receptor. Strikingly though, leukocyte subset numbers and adipokine receptor expression profiles were largely similar in obese children and controls. Obese children showed higher naïve B-cell numbers, and pre-intervention also higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction. CONCLUSIONS: First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.


Assuntos
Leucócitos/citologia , Obesidade/metabolismo , Receptores de Adipocina/metabolismo , Adipocinas/sangue , Adolescente , Índice de Massa Corporal , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Citometria de Fluxo , Humanos , Masculino , Obesidade/sangue
12.
J Cyst Fibros ; 16(3): 410-417, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28283399

RESUMO

BACKGROUND: Cystic fibrosis (CF) patients are advised to derive 35% of their daily energy intake from dietary fat. Whether this high fat intake is associated with dyslipidaemia is unknown. We described the lipid profile and dietary intake in paediatric patients with CF. METHODS: 110 fasting lipid concentrations of 110 Dutch patients with CF were studied, along with 86 measurements of dietary intake. For the total group and for boys and girls separately, the lipid profile and the dietary intake were investigated. The cross-sectional relationship between the lipid concentrations and dietary intake was determined. RESULTS: The mean dietary fat intake was ≥35% of the total energy intake, along with a considerable consumption of saturated fat. We found lower concentrations of cholesterol, high-density lipoprotein cholesterol and low-density lipoprotein cholesterol, and increased concentrations of triglyceride and triglyceride to high-density lipoprotein cholesterol ratios. Lipid concentrations were not associated with dietary fat intake. CONCLUSION: This study lacks variation in dietary fat intake to exclude an effect on lipid concentrations as the distribution of dietary fat intake remained constant at a high level. Elevated triglyceride concentrations and triglyceride to high-density lipoprotein cholesterol ratios suggest an increased risk of cardiovascular disease. Any negative consequences of a high dietary fat intake on the overall lipid profile later in life cannot be excluded.


Assuntos
HDL-Colesterol/sangue , LDL-Colesterol/sangue , Colesterol/sangue , Fibrose Cística , Gorduras na Dieta/análise , Triglicerídeos/sangue , Adolescente , Criança , Estudos Transversais , Fibrose Cística/sangue , Fibrose Cística/epidemiologia , Fibrose Cística/fisiopatologia , Ingestão de Energia/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Humanos , Masculino , Países Baixos/epidemiologia
14.
J Biol Chem ; 289(32): 22128-39, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24966328

RESUMO

Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-ß and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPß and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis.


Assuntos
Adipócitos/imunologia , Adipócitos/metabolismo , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Proteínas de Transporte/metabolismo , Lipídeos/imunologia , Células 3T3-L1 , Adipogenia/genética , Adipogenia/imunologia , Animais , Antígenos CD1d/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas de Transporte/genética , Comunicação Celular/imunologia , Metabolismo Energético , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Células T Matadoras Naturais/imunologia , Transcrição Gênica
15.
Lipids ; 49(3): 247-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24445379

RESUMO

We investigated the postprandial changes in plasma levels of adipocytokines in overweight patients with metabolic syndrome after an oral fat load. After an oral fat load and during a prolonged fast, blood was drawn at 0, 2, 3, 4 and 8 h for measurement of adiponectin, adipsin, cathepsin S, chemerin, hepatic growth factor, interferon-γ-inducible protein-10, leptin, macrophage chemoattractant protein-1, macrophage migration inhibitory factor, nerve growth factor, retinol binding protein-4, resistin, serum amyloid A1, tissue inhibitor of metalloproteinase-1 and thrombopoietin using a microbead-based Luminex assay. Area under the curves (AUC) were calculated and compared. Plasma adiponectin levels were higher after an oral fat load compared to fasting at t = 2 h (950 ± 513 vs. -1,881 ± 713 ng/ml) while the plasma levels for adipsin (-9 ± 5 vs. 16 ± 5 ng/ml), chemerin (-122 ± 35 vs. 13 ± 21 ng/ml), SAA-1 (-391 ± 213 vs. 522 ± 173 ng/ml) and TPO (-335 ± 144 vs. 622 ± 216 ng/ml) were lower after an oral fat load compared to fasting. The baseline corrected AUC for IP-10 was higher after fat load compared to fasting (median -116 pg h/ml; IQR -270 to 10 vs. -21 pg h/ml; IQR -136 to 418 (p = 0.047). In conclusion, in overweight male subjects with the metabolic syndrome, an oral fat load is accompanied with a modest anti-inflammatory response of adipose tissue-derived adipocytokines.


Assuntos
Adipocinas/biossíntese , Citocinas/biossíntese , Gorduras na Dieta/administração & dosagem , Síndrome Metabólica/metabolismo , Sobrepeso/metabolismo , Administração Oral , Jejum , Humanos , Masculino , Síndrome Metabólica/complicações , Pessoa de Meia-Idade , Sobrepeso/complicações
16.
Obesity (Silver Spring) ; 22(5): 1296-308, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24339422

RESUMO

OBJECTIVE: Extracellular vesicles (EVs) released by human adipocytes or adipose tissue (AT)-explants play a role in the paracrine interaction between adipocytes and macrophages, a key mechanism in AT inflammation, leading to metabolic complications like insulin resistance (IR) were determined. METHODS: EVs released from in vitro differentiated adipocytes and AT-explants ex vivo were characterized by electron microscopy, Western blot, multiplex adipokine-profiling, and quantified by flow cytometry. Primary monocytes were stimulated with EVs from adipocytes, subcutaneous (SCAT) or omental-derived AT (OAT), and phenotyped. Macrophage supernatant was subsequently used to assess the effect on insulin signaling in adipocytes. RESULTS: Adipocyte and AT-derived EVs differentiated monocytes into macrophages characteristic of human adipose tissue macrophages (ATM), defined by release of both pro- and anti-inflammatory cytokines. The adiponectin-positive subset of AT-derived EVs, presumably representing adipocyte-derived EVs, induced a more pronounced ATM-phenotype than the adiponectin-negative AT-EVs. This effect was more evident for OAT-EVs versus SCAT-EVs. Furthermore, supernatant of macrophages pre-stimulated with AT-EVs interfered with insulin signaling in human adipocytes. Finally, the number of OAT-derived EVs correlated positively with patients HOMA-IR. CONCLUSIONS: A possible role for human AT-EVs in a reciprocal pro-inflammatory loop between adipocytes and macrophages, with the potential to aggravate local and systemic IR was demonstrated.


Assuntos
Adipócitos/ultraestrutura , Comunicação Celular , Macrófagos/metabolismo , Adipocinas/metabolismo , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Fatores Imunológicos/farmacologia , Inflamação/metabolismo , Insulina/metabolismo , Resistência à Insulina , Monócitos/citologia , Monócitos/metabolismo , Obesidade/metabolismo , Transdução de Sinais
17.
J Clin Invest ; 122(9): 3343-54, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22863618

RESUMO

Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.


Assuntos
Resistência à Insulina/imunologia , Gordura Intra-Abdominal/patologia , Células T Matadoras Naturais/fisiologia , Gordura Subcutânea/patologia , Adipócitos/metabolismo , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Linhagem Celular , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Regulação para Baixo , Expressão Gênica , Humanos , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/fisiopatologia , Fígado/metabolismo , Fígado/patologia , Depleção Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Receptores CCR2/metabolismo , Gordura Subcutânea/imunologia , Gordura Subcutânea/fisiopatologia , Linfócitos T Reguladores/patologia , Transcriptoma , Triglicerídeos/metabolismo
18.
Trends Endocrinol Metab ; 23(8): 407-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22795937

RESUMO

Adipose tissue (AT) plays a pivotal role in whole-body lipid and glucose homeostasis. AT exerts metabolic control through various immunological mechanisms that instigated a new research field termed immunometabolism. Here, we review AT-resident immune cells and their role as key players in immunometabolism. In lean subjects, AT-resident immune cells have housekeeping functions ranging from apoptotic cell clearance to extracellular matrix remodeling and angiogenesis. However, obesity provides bacterial and metabolic danger signals that mimic bacterial infection, and drives a shift in immune-cell phenotypes and numbers, classified as a prototypic T helper 1 (Th1) inflammatory response. The resulting AT inflammation and insulin resistance link obesity to its metabolic sequel, and suggests that targeted immunomodulatory interventions may be beneficial for obese patients.


Assuntos
Sistema Imunitário/citologia , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/imunologia , Metabolismo/imunologia , Apoptose , Infecções Bacterianas/imunologia , Matriz Extracelular/fisiologia , Humanos , Sistema Imunitário/fisiologia , Imunidade/fisiologia , Inflamação , Resistência à Insulina , Neovascularização Fisiológica , Obesidade/imunologia , Células Th1/imunologia
19.
Cancer Cell ; 20(3): 370-83, 2011 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-21907927

RESUMO

The development of resistance to chemotherapy is a major obstacle for lasting effective treatment of cancer. Here, we demonstrate that endogenous mesenchymal stem cells (MSCs) become activated during treatment with platinum analogs and secrete factors that protect tumor cells against a range of chemotherapeutics. Through a metabolomics approach, we identified two distinct platinum-induced polyunsaturated fatty acids (PIFAs), 12-oxo-5,8,10-heptadecatrienoic acid (KHT) and hexadeca-4,7,10,13-tetraenoic acid (16:4(n-3)), that in minute quantities induce resistance to a broad spectrum of chemotherapeutic agents. Interestingly, blocking central enzymes involved in the production of these PIFAs (cyclooxygenase-1 and thromboxane synthase) prevents MSC-induced resistance. Our findings show that MSCs are potent mediators of resistance to chemotherapy and reveal targets to enhance chemotherapy efficacy in patients.


Assuntos
Antineoplásicos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Compostos de Platina/farmacologia , Tromboxano-A Sintase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carboplatina/administração & dosagem , Carboplatina/farmacologia , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Inibidores de Ciclo-Oxigenase , Humanos , Espectrometria de Massas , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Tromboxano-A Sintase/antagonistas & inibidores , Células Tumorais Cultivadas
20.
Clin Chem ; 56(8): 1320-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20530731

RESUMO

BACKGROUND: Adipose tissue secretory proteins, called adipokines, play pivotal roles in the pathophysiology of obesity and its associated disorders such as metabolic syndrome, type 2 diabetes, and cardiovascular disease. Because methods for comprehensive adipokine profiling in patient plasma and other biological samples are currently limited, we developed a multiplex immunoassay for rapid and high-throughput measurement of 25 adipokines in only 50 microL of sample. METHODS: (Pre)adipocyte and ex vivo cultured adipose tissue supernatants were generated and together with plasma from 5 morbidly obese patients and 5 healthy and normal weight controls used to develop the adipokine multiplex immunoassay and test its usefulness in biological samples. We assessed adipokine dynamic ranges, lower limits of detection and quantification, cross-reactivity, intra- and interassay variation, and correlation with adipokine ELISAs. RESULTS: The limits of quantification and broad dynamic ranges enabled measurement of all 25 adipokines in supernatants and patient plasmas, with the exception of TNF-alpha in plasma samples. Intraassay variation was <10% for all adipokines; interassay variation was < 15%. The multiplex immunoassay results correlated significantly with ELISA measurements. Plasma adipokine profiling showed significantly higher concentrations of the novel adipokines cathepsin S (5.1 x 10(4) vs 4.3 x 10(4) ng/L, P = 0.003) and chemerin (4.1 x 10(5) vs 2.7 x 10(5) ng/L, P = 0.0008) in morbidly obese patients than normal weight controls, besides the established differences in adiponectin and leptin concentrations. CONCLUSIONS: Our findings underscore the relevance of the novel adipokines cathepsin S and chemerin, but foremost the potential of this novel method for both comprehensive adipokine profiling in large patient cohorts and for biological discovery.


Assuntos
Adipocinas/análise , Adipócitos/química , Adipocinas/sangue , Tecido Adiposo/citologia , Adulto , Linhagem Celular , Reações Cruzadas , Feminino , Humanos , Imunoensaio , Pessoa de Meia-Idade , Obesidade Mórbida/sangue , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...